High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates
نویسندگان
چکیده
منابع مشابه
High Mobility SiGe/Si Transistor Structures on Sapphire Substrates Using Ion Implantation
High mobility n-type SiGe/Si transistor structures have been fabricated on sapphire substrates by ion implanting phosphorus ions into strained 100 for the first time. The strained Si channels were sandwiched between Sio.7Geo.3 layers, which, in turn, were deposited on Sio.7Geo.3 virtual substrates and graded SiGe buffer layers. After the molecular beam epitaxy (MBE) film growth process was comp...
متن کاملHigh electron mobility in SiGelSi n-MODFET structures on sapphire substrates
For the first time, SiGe/Si n-Modulation Doped Field Effect Transistors (n-MODFET) structures have been grown on sapphire substrates. Room temperature electron mobility value of 1271 cm2N-sec at an electron carrier density (ne) of 1.6~10’2 cm2 was obtained. At 250 mK, the mobility increases to 13,313 cm2N-sec (ne=1.33~10’2 cm-2) and Shubnikov-de Haas oscillations appear, showing excellent confi...
متن کاملInvestigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations
AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1-xN}/AlN, (b) Thin-GaN/3 × {AlxGa1-xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross...
متن کاملAlGaN/GaN High-Electron-Mobility Transistors on Different Substrates
The performance ofaluminum gallium nitride/gallium nitride (AlGaN/GaN) high-electron-mobility transistors (HEMTS) diamond and silicon carbide (SiC) substrates is examined. Additionally, the temperature rise in similar devices on diamond and SiC substrates is reported. Recently, identical AlGaN/GaN HEMTs have been fabricated at Cornell NanoScale Science & Technology Facility (CNF) on diamond, bu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MRS Proceedings
سال: 2003
ISSN: 0272-9172,1946-4274
DOI: 10.1557/proc-783-b6.5